
From North Stars to Clever Insights

On using grand challenges to drive new techniques in automated
theorem proving

Nikolaj Bjørner

Microsoft Research

Aim of talk

Describe a set of applications that use Satisfiability Modulo Theories, SMT

Describe model-based techniques, an insight driving SMT architecture

Is formula satisfiable
modulo theory T ?

SMT solvers have

specialized algorithms for T

SMT solvers have

specialized algorithms for T

Satisfiability Modulo Theories (SMT)

Arithmetic Array Theory
Uninterpreted

Functions

Uninterpreted

Functions

𝑠𝑒𝑙𝑒𝑐𝑡(𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑖, 𝑣 , 𝑖) = 𝑣
𝑖 ≠ 𝑗 ⇒ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑖, 𝑣 , 𝑗) = 𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑗)

𝑥 + 2 = 𝑦 ⇒ 𝑓 𝑠𝑒𝑙𝑒𝑐𝑡 𝑠𝑡𝑜𝑟𝑒 𝑎, 𝑥, 3 , 𝑦 − 2 = 𝑓(𝑦 − 𝑥 + 1)

Satisfiability Modulo Theories (SMT)

../tutorial/ex1.py
../tutorial/ex1.py
../tutorial/ex1.py
../tutorial/ex1.py.txt

Z3 – An Efficient SMT Solver

What it is for:

• Program analysis tools ultimately
rely on solving logical constraints

 “The calculus of computation”

• A need to lower barrier of entry
for program analysis tools

What it is:

• General purpose theorem prover

• Specialized algorithms for
important workloads

• Open Source on GitHub

Some Microsoft Uses of

Microsoft
Security Risk

Detection

SecGuru and
FIB verifier

Dynamics Product
Configurator

Project
Everest

∀𝑥∃𝑦 𝑝 𝑥 → 𝑥 ≥ 𝑦

https://www.fstar-
lang.org/tutorial/

https://www.fstar-lang.org/tutorial/
https://www.fstar-lang.org/tutorial/
https://www.fstar-lang.org/tutorial/
https://www.fstar-lang.org/tutorial/

• Verified C compiler for the Microsoft Hyper-Visor 2008-2012
• Verified TLS protocols, Crypto Libraries, Parsers. Project Everest 2016-2022

Several Significant Systems:
• Frama-C,
• VeriFast, Vyper,
• SeaHorn,
• K, Key

$ref_cnt(old($s), #p) == $ref_cnt($s,
#p) && $ite.bool($set_in(#p,
$owns(old($s), owner)),
 $ite.bool($set_in(#p, owns),
 $st_eq(old($s), $s, #p),
 $wrapped($s, #p, $typ(#p)) &&
 $timestamp_is_now($s, #p)),
$ite.bool($set_in(#p, owns),
$owner($s, #p) == owner && $closed($s,

#include <vcc2.h>

typedef struct _BITMAP {
 UINT32 Size; // Number of bits …
 PUINT32 Buffer; // Memory to store …

 // private invariants
 invariant(Size > 0 && Size % 32 == 0)
 …

Annotated C

(FORALL (v lv x lxv w a b)
 (QID bv:e:c4)
 (PATS
 ($bv_extract
 ($bv_concat
 ($bv_extract v lv x lv) lxv w x)
 lv a b))
 (IMPLIES
 (AND

FOL

Boogie

Z3

Dynamic Symbolic Execution for finding million-dollar bugs

SAGE, Pex, Yogi, Corral, Vigilante, ..

Execution Path Execution Path
Run Test and Monitor Path Condition

Unexplored path Solve

seed seed

New input

Test
Inputs

Test
Inputs

Constraint
System

Constraint
System

Known
Paths

Known
Paths

error();

z ==
hash(x)

Return z

Input x, y

Z := x + y

x = y = 0

z = x + y & z != hash(x); error

z = x + y & z == hash(x); x = 0, y = hash(x)

HyperScale Network Verification

T1-1 T1-2 T1-3 T1-m

T0-1
ASN

65510

T0-2
ASN

65511

T0-q
ASN

65520

Servers

T1-1 T1-2 T1-3 T1-m

T0-1
ASN

65510

T0-2
ASN

65511

T0-q
ASN

65520

Servers

T1-1 T1-2 T1-3 T1-m

T0-1
ASN

65510

T0-2
ASN

65511

T0-q
ASN

65520

Servers

T2-1-1 T2-1-1 T2-1-n T2-1-1 T2-1-1 T2-1-n

T3-2 T3-1 T3-3 T3-p Architecture

Reachability
invariants

Errors

Instance
Metadata

[Jayaraman et al SIGCOMM 2019]

Forwarding Policies

Live monitoring of drift

Pre-check before
deployment

Design validation

Connectivity Restrictions

Host Firewalls

Customer facing Network
Security Groups

Major refactoring of
Microsoft’s Edge ACL

Local Validation: The Scalability Trick

Root Cause Complexity

• O(N3)

• Billions of pairs of ToRs

• Engineering challenge:
Synchronized snapshot of FIBs

Key Insight

Exploit Azure network’s regular
structure

• Each router has a fixed role
for a set of addresses

• Enough to verify role is
enforced on each router

Decompose into local contracts

Parallelize and scale

SMT-based Algorithm

VRF name: default

Codes: C - connected, S - static, K - kernel,

 O - OSPF, IA - OSPF inter area, ...

 B E - eBGP, ...

 ...

Gateway of last resort:

 B E 0.0.0.0/0 [200/0] via 30.10.192.12, ...

 via ...

 via ...

 B E 10.3.129.224/28 [200/0] via 10.10.192.12, ...

 via ...

 ...

 𝐫𝟏𝟑. 𝒑𝒓𝒆𝒇𝒊𝒙 𝒙 = 𝟏𝟎. 𝟑. 𝟏𝟐𝟗. 𝟐𝟐𝟒 ≤ 𝒙 ≤ 𝟏𝟎. 𝟑. 𝟏𝟐𝟗. 𝟏𝟒𝟎
 𝐫𝟏𝟑. 𝒏𝒆𝒙𝒕𝒉𝒐𝒑𝒔 = 𝟏𝟎. 𝟏𝟎. 𝟏𝟗𝟐. 𝟏𝟐 ∨ . . .

𝑫𝒆𝒇𝒊𝒏𝒆 𝑷, 𝑷𝒊 𝟎 ≤ 𝒊 ≤ 𝒏 , 𝒂𝒏𝒅 𝑷𝒏:
𝑷 𝒙 = 𝑷𝟏 𝒙
𝑷𝒊 𝒙 = 𝒊𝒇 𝒓𝒊. 𝒑𝒓𝒆𝒇𝒊𝒙 𝒙 𝒕𝒉𝒆𝒏 𝒓𝒊. 𝒏𝒆𝒙𝒕𝒉𝒐𝒑𝒔 𝒆𝒍𝒔𝒆 𝑷𝒊+𝟏 𝒙
𝑷𝒊 𝒙 = 𝒅𝒓𝒐𝒑

Check 𝑪. 𝒓𝒂𝒏𝒈𝒆 𝒙 ∧ 𝑷 ∧ ¬𝑪. 𝒏𝒆𝒙𝒕𝒉𝒐𝒑𝒔

ACL Verification Engine

https://try.imandra.ai/

Recursive
Function
Unfolding

Algebraic ML
Datatypes

Ground
Arithmetic

https://try.imandra.ai/

Quantum: Reversible pebbling game

DATE-2019. Giulia Meuli Mathias Soeken, Giovanni De Micheli (EPFL), Martin Roetteler, B (Microsoft)

Example: find a pebbling strategy using 6 pebbles.

a ◌ ● ● ● ● ● ● ● ● ● ◌

b ◌ ◌ ● ● ● ● ● ● ● ◌ ◌

c ◌ ◌ ◌ ● ● ● ● ● ◌ ◌ ◌

d ◌ ◌ ◌ ◌ ● ● ● ◌ ◌ ◌ ◌

e ◌ ◌ ◌ ◌ ◌ ● ● ● ● ● ●

f ◌ ◌ ◌ ◌ ◌ ◌ ● ● ● ● ●

a b

f

e

d c

x1 x2 x3
x4

y1

y2

P1 = {φ},

P2 = {a},

P3 = {a, b},

P4 = {a , b, c},

P5 = {a, b, c, d},

P6 = {a, b, c, d, e},

P7 = {a, b, c, d, e, f},

P8 = {a, b, c, e, f},

P9= {a, b, e, f},

P10 = {a, e, f},

Pm = P11 = {e, f}

pebbling configurations

x1

x2

x3

x4
 0

 0

 0

 0

a a
b b

c c
d

e

d

f

 0

 0 y2

y1

 0

x1

x2

x3

x4
 0

 0

 0

space-time trade-off

reversible circuit

Example in Tutorial

Casey Mulligan, University of Chicago, School of Economics uses Mathematica, Redlog, Z3

Axiomatic Economics

Models of economics formulated using Non-linear Real Arithmetic

Example in Tutorial

Symbolic Analysis Engines

SAGE

HAVOC

Efficient E-matching for SMT solvers

Model-based Theory Combination.

Relevancy Propagation

Effectively Propositional Logic

Engineering DPLL(T) + Saturation

Generalized, Efficient Array Decision Procedures

Linear Quantifier Elimination

Model Based Quantifier Instantiation

Quantified Bit-Vectors

CutSAT: Linear Integer Formulas

Model Constructing SAT

Existential Reals

 nZ: Opt+MaxSMT
mZ: Datalog

Generalized PDR

SLS, floats

 Internals

Model-based techniques in
Automated Theorem Proving

Saturation x Search

Proof-finding Model-finding

M
o

d
els

P
ro

o
fs

Two procedures

Resolution DPLL

Proof-finder Model-finder

Saturation Search

Saturation: successful instances

Polynomial time procedures

Gaussian Elimination

Congruence Closure

Search: successful instances

Decomposable Search Spaces

The “Cube” in “Cube & Conquer”

Some instances of model finding

CDCL: Conflict Driven Clause Learning

D
P

LL

U
n

it
 r

es
o

lu
ti

o
n

¬𝑝 ∨ ¬𝑞, 𝑝 ∨ ¬𝑞, ¬𝑝 ∨ 𝑞, 𝑝 ∨ 𝑞

¬𝑞 𝑞

⊥⊥

Conflict

Resolve

Learn ¬𝒒
Conflict

Backjump

Guess q

Propagate ¬𝑝

Propagate ¬𝒒

Linear Arithmetic

Fourier-Motzkin Simplex

Proof-finder Model-finder

Saturation Search

Linear Arithmetic

Saturation:

𝑎 ≤ 𝑥, 𝑏 ≤ 𝑥, 𝑐 ≤ 𝑥, 𝑥 ≤ 𝑑, 𝑥 ≤ 𝑒

𝑎 ≤ 𝑑, 𝑎 ≤ 𝑒, 𝑏 ≤ 𝑑, 𝑏 ≤ 𝑒, 𝑐 ≤ 𝑑, 𝑐 ≤ 𝑑

Model Finding:

𝑎≤𝑥,𝑏≤𝑥,𝑐≤𝑥,𝑥≤𝑑,𝑥≤𝑒

𝑎≤𝑑,𝑏≤𝑑,𝑐≤𝑑,𝑑≤𝑒 𝑎≤𝑒,𝑏≤𝑒,𝑐≤𝑒,𝑒≤𝑑

For models d = 2, e = 3 For models d = 4, e = 3

Other examples
(for linear arithmetic)

Fourier-Motzkin

Generalizing DPLL to
richer logics

[McMillan 2009]

Conflict Resolution
[Korovin et al 2009]

X

Unate Lemmas
[Coton 2009]

Little engines of proof

Z3 Architecture

SMT = SAT + Theories

• SAT Solver handles search

• Theory Solvers handle theory reasoning

• Integration through equality sharing

Model-based theory combination

• Each theory constructs a candidate model

• Each model implies some equalities

• Propagate equalities implied by candidate model

• Use backtracking if theories cannot reconcile equalities

Theory Solver 1 found solution
X + Y + Z = 1
X = Y = 0, Z = 1

Theory Solver 2 found solution
X + Y + Z = 2
X = 0, Y = Z = 1

[Moura & B, SMT 2007] Search for solution where X = Y = Z

Model-based Quantifier Instantiation

Assume we are given 𝜓 ∧ ∀𝑥 𝜑[𝑥],
then use model for 𝜓 as starting point

for search of instantiations of ∀𝑥 𝜑[𝑥]

 𝜓: 𝑓 𝑏 > 𝑓(𝑎)

 𝜑 𝑥 : 𝑓 𝑥 > 𝑓(𝑎)

Candidate model:

𝑎 ≔ 0, 𝑏: = 1, 𝑓 𝑥 ≔ 𝑥 = 0? 1: 2

Model check:

 is 𝑓(𝑥)
𝑥=0?1:2

≤ 𝑓(𝑎)
=1

 SAT?

Yes, set 𝑥 = 𝑎 = 0

Model-based Quantifier Instantiation

Assume we are given 𝜓 ∧ ∀𝑥 𝜑[𝑥],
then use model for 𝜓 as starting point

for search of instantiations of ∀𝑥 𝜑[𝑥]
𝑡𝑀 = 𝑥𝑀 is not a strict
requirement.

It is sufficient to use M to mine
for a term t that still satisfies

𝜑[𝑡]

[Ge, de Moura CAV 2009, ..]

Generalized, Efficient Array Decision Procedures

Array store and read operations (a[i]), and

Rules such as:

Model-based filters for restricting the application of these rules while

retaining completeness.
[de Moura & B, FMCAD 2009]

Polynomial Constraints

𝑥2 − 4𝑥 + 𝑦2 − 𝑦 + 8 < 1
 𝑥𝑦 − 2𝑥 − 2𝑦 + 4 > 1

AKA
Existential Theory of the Reals

NLSAT
Key ideas: Use partial solution to guide the search

𝑥3 + 2𝑥2 + 3𝑦2 − 5
< 0

𝑥2 + 𝑦2 < 1

−4𝑥𝑦 − 4𝑥 + 𝑦
> 1

Feasible Region

Starting search
Partial solution:

𝑥 ← 0.5

Can we extend it to 𝑦?

MCSat

Search
• Trail: values guessed for sub-terms

• Propagate values, derive consequences

• Conflict resolution: Detect, backjump, learn

• Forget, restart, indexing,…

T-Solvers

x + y + z > 0 -x + y + z < 0 x := 0 y := 0
Arithmetic

Solver

x + y + z > 0 -x + y + z < 0 x > 0

Conflict: z > 0, z < 0

x > 0 is “explained” by the clause 𝑥 + 𝑦 + 𝑧 > 0 ∧ −𝑥 + 𝑦 + 𝑧 < 0 ⇒
 𝑥 > 0

x + y + z > 0 -x + y + z < 0 x := 0 y := 0

Trail

MCSAT

Craig Interpolant Generalization

[Jovanovich, Barret, de Moura, VMCAI 2013]

Solving LIA* using approximations
 - models and interpolants

 𝐹1: 𝑦 + 2𝑥 ≥ 17 ∧ 6𝑥 − 𝑦 ≤ 47

 𝐹2: 5𝑥 + 2𝑦 ≥ 17 ∧ 3𝑥 − 𝑦 ≤ 8 ∧ 2𝑥 + 3𝑦 ≤ 20

 𝐹1∧ 𝐹2 is UNSAT

 𝐹2
∗ ∶ ∃𝑥1, 𝑦1𝑥2, 𝑦2, …

 𝐹2 𝑥1, 𝑦1 ∧ 𝐹2 𝑥2, 𝑦2 ∧ ⋯∧ 𝐹2 𝑥𝑘 , 𝑦𝑘 ∧
 𝑥 = ∑𝑥𝑖 ∧ 𝑦 = ∑𝑦𝑖

𝐹1 ∧ 𝐹2

∗ is SAT
 [Levatich, B, Piskac, Shoham, to appear VMCAI 2020]

Solving LIA* using Approximations

Claim: 𝐹2
∗ can be expressed in LIA

Claim: 𝐹2 can be expressed as 𝒙 ∈ 𝑎𝑖 + 𝐵𝑖
∗

𝑖
 i.e., every LIA formula is a finite union of semi-linear sets.

Justification: 𝐹2
∗(𝑥) ≔ ∃𝝁𝝀. (𝑥 = ∑ 𝜇𝑖𝑎𝑖 + 𝜆𝑖𝐵𝑖) ∧ 𝜇𝑖 = 0 → 𝜆𝑖 = 0𝑖𝑖

Brute force solver: express 𝐹2
∗ using semi-linear sets, then use LIA solver

Catch: completely impractical

Solving LIA* using Approximations

Solve 𝐹1 ∧ 𝐹2
∗

Establish under-approximation 𝑈∗ → 𝐹2
∗ such that 𝑈∗ ∧ 𝐹1 is SAT

Establish over-approximation 𝐹2
∗ → 𝑂∗ such that 𝑂∗ ∧ 𝐹1 is UNSAT

P
ro

o
fs

M
o

d
el

s

Under-approx 𝑈∗ → 𝐹2
∗ such that 𝑈∗ ∧ 𝐹1 is SAT

Initially, 𝑈 ≔ ∅, 𝑈∗ ≔ 𝑥, 𝑦 = 0,0

Maintain, 𝑈 = 𝑎𝑖 + 𝜆𝐵𝑖𝑖 under-approximates 𝐹2
 and set 𝑈∗(𝑥) ≔ ∃𝝁𝝀. (𝑥 = ∑ 𝜇𝑖𝑎𝑖 + 𝜆𝑖𝐵𝑖) ∧ 𝜇𝑖 = 0 → 𝜆𝑖 = 0𝑖𝑖

Find 𝑥, 𝑦: 𝑈∗ 𝑥0, 𝑦0 ∧ 𝐹2 𝑥, 𝑦 ∧ ¬𝑈

∗ 𝑥0 + 𝑥, 𝑦0 + 𝑦

Add (𝑥, 𝑦) to 𝑈, reduce vectors using new element

Over-approx 𝐹2
∗ → 𝑂∗ such that 𝑂∗ ∧ 𝐹1 is UNSAT

 𝑈0 ≔ 𝑥, 𝑦 𝑈
∗ 𝑥, 𝑦 }

 𝑈𝑖+1 ≔ 𝑈𝑖 ∪ { (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) 𝑈𝑖+1 𝑥1, 𝑦1 ∧ 𝐹2(𝑥2, 𝑦2)}

 𝐵0 ≔ 𝑥, 𝑦 𝐹1 𝑥, 𝑦 }

 𝐵𝑖+1 ≔ 𝐵𝑖 ∪ { (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) 𝐵𝑖+1 𝑥1, 𝑦1 ∧ 𝐹2(𝑥2, 𝑦2)}

𝐵0

𝐵1

𝐵2

𝑈0

𝑈1

𝑈2

Over-approx 𝐹2
∗ → 𝑂∗ such that 𝑂∗ ∧ 𝐹1 is UNSAT

Initially 𝑂∗ := true

Interpolate
 𝑈∗ 𝑥0, 𝑦0 ∧ 𝐹2 𝑥1, 𝑦1 → 𝐼(𝑥0 + 𝑥1, 𝑦0 + 𝑦1),
 𝐼(𝑥, 𝑦) → (𝐹2 𝑥2, 𝑦2 → ¬𝐹1 𝑥2 + 𝑥, 𝑦2 + 𝑦)

Add conjunctions from 𝐼 to 𝑂∗ that are inductive, that is:
 𝑂∗ 𝑥, 𝑦 ∧ 𝐹2 𝑥1, 𝑦1 → 𝑂

∗ 𝑥 + 𝑥1, 𝑦 + 𝑦1

Solving LIA* using Approximations

Q:
 Can we leverage duality fully?

 We were only exploiting the duality in one direction:

 Under-approximation U* used to strengthen O*

 But O* was not used to weaken U*

QSAT – Playing with Models and Cores

Instantiated to theories

• Linear real arithmetic

• Linear integer arithmetic

• Algebraic datatypes

• Non-linear real arithmetic

• (Bit-vectors)

Q: What is a good approach to learn strategies?

Q: Mixing theories and beyond theories that admit QE?

QSAT – Playing with Models and Cores

Two players

• ∃: ∃𝑥1∀𝑦2∃𝑥3∀𝑦4𝐹, 𝐹1 ← 𝐹3 ← 𝐹

• ∀: ∀𝑥1∃𝑦2∀𝑥3∃𝑦4¬𝐹 𝐹2 ← 𝐹4 ← ¬𝐹

State:

• A model, M,

• for oponents solution

• A strategy, S,

• function declaring how opponent would assign its variables in response

• Example

• It is 𝑥3’s turn

• M says 𝑥1 = 5, 𝑦2 = 3
• S says 𝑦4 = 𝑥3 + 2

Example move:

• 𝐹3 ∧ 𝑆 ∧ 𝑀 is UNSAT

• Core ← 𝑆𝑜𝑚𝑒 𝑈𝑁𝑆𝐴𝑇 𝐶𝑜𝑟𝑒 𝑜𝑓 𝐹3 ∧ 𝑀 ∧ 𝑆

• ∃𝐶 ← Model-based projection of ∃𝑦2 𝐶𝑜𝑟𝑒

• 𝐹1 ← 𝐹1 ∧ ¬∃𝐶

• Play game at level 1

[Janota, B LPAR 2015 short]

Summary

• SMT solvers have come into quite wide-spread use in the past decade

• Thanks to a large span of applications and technical advances

• Many solving techniques exploit duality of model search and deduction

• Harnessing the interplay remains a throve of future opportunities

• Beyond model-based techniques:

• “Cubing”: Establish problem decomposition

• “Strategies”: Prune search space that is no more likely to produce
solutions

Research Question: Guiding Search

Problem: Tuned engines are prone to overfitting

State of art: Tune input parameters (using ML) and code back-off schemes

Opportunity: Use data-driven techniques to re-direct search

Learning cubes using DNNs

Goal: Choose most important case split

Train DNN using unsat formulas:

• Log conflict clauses

• Use DRAT-Trim to extract unsat core

• Score(v) := if v in core then 1 else 0.

Idea: only variables in a core are useful to case
split on

DNN architecture: NeuroSAT (a graphical
Neural Network)

Experiment:
• Generated 100,000 unsat

problems from SAT
competition 2014-2017

• Trained network with
cores from the training set

• Integrated in SAT solvers
glucose, MiniSAT, Z3
by periodically refocusing
case split queue

• Evaluated on SAT2018

• Solved +10%/+20% more

[Selsam, B. SAT 2019]

Background and Learnings

• Clauses:

• Graphical Network:

• DRAT proof Trail:

 • Learning: Access to DRAT proof trail enables 20/20
hindsight for optimization. Makes RL less relevant.

• Future: We could explore space of objective
functions much more and instance specific uses.

Research Question: Scaling Search

Problem: How to use cloud resources to solve really-hard problems?

State of art: Cube & Conquer in SAT solvers, Branch & Bound in MIP

Opportunity: Use Azure infrastructure for scalable Cube & Conquer for SMT

Cube, Cloud and Z3

L0 worker

L1 worker

Solves and creates

subgoals

Azure

Queue

Cubes

Formulas

Solutions

Configurations

Blob Store
Store and
retrieve
state

Prepare
initial goal

get
goal

add
goal

Rahul Kumar (MSR)
Miguel Neves (U Lisboa)

L1 worker

Solves and creates

subgoals

L1 worker

Solves and creates

subgoals

L1 worker

Solves and creates

subgoals

L1 worker

Solves and creates

subgoals

