From North Stars to Clever Insights

On using grand challenges to drive new techniques in automated theorem proving

Nikolaj Bjørner Microsoft Research

Aim of talk

Describe a set of applications that use Satisfiability Modulo Theories, SMT

Describe model-based techniques, an *insight* driving SMT architecture

Satisfiability Modulo Theories (SMT)

Is formula φ satisfiable modulo theory T ?

SMT solvers have specialized algorithms for *T*

Satisfiability Modulo Theories (SMT)

$$x + 2 = y \Rightarrow f(select(store(a, x, 3), y - 2)) = f(y - x + 1)$$

select(store(a, i, v), i) = v $i \neq j \Rightarrow select(store(a, i, v), j) = select(a, j)$

Z3 – An Efficient SMT Solver

What it is for:

What it is:

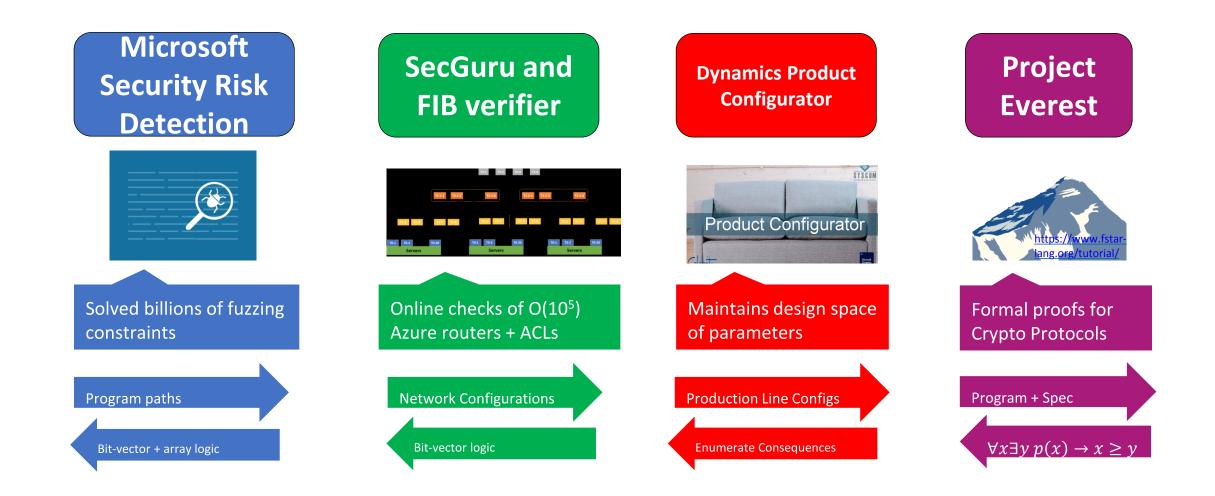
• Program analysis tools ultimately rely on solving logical constraints

"The calculus of computation"

• A need to lower barrier of entry for program analysis tools

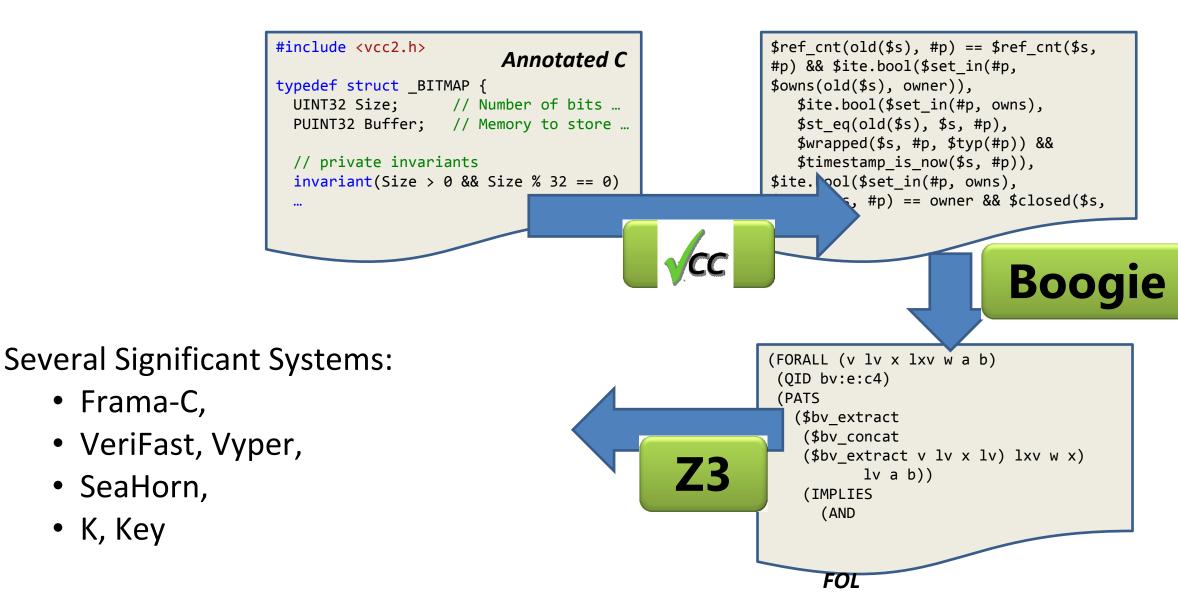
- General purpose theorem prover
- Specialized algorithms for important workloads
- Open Source on GitHub

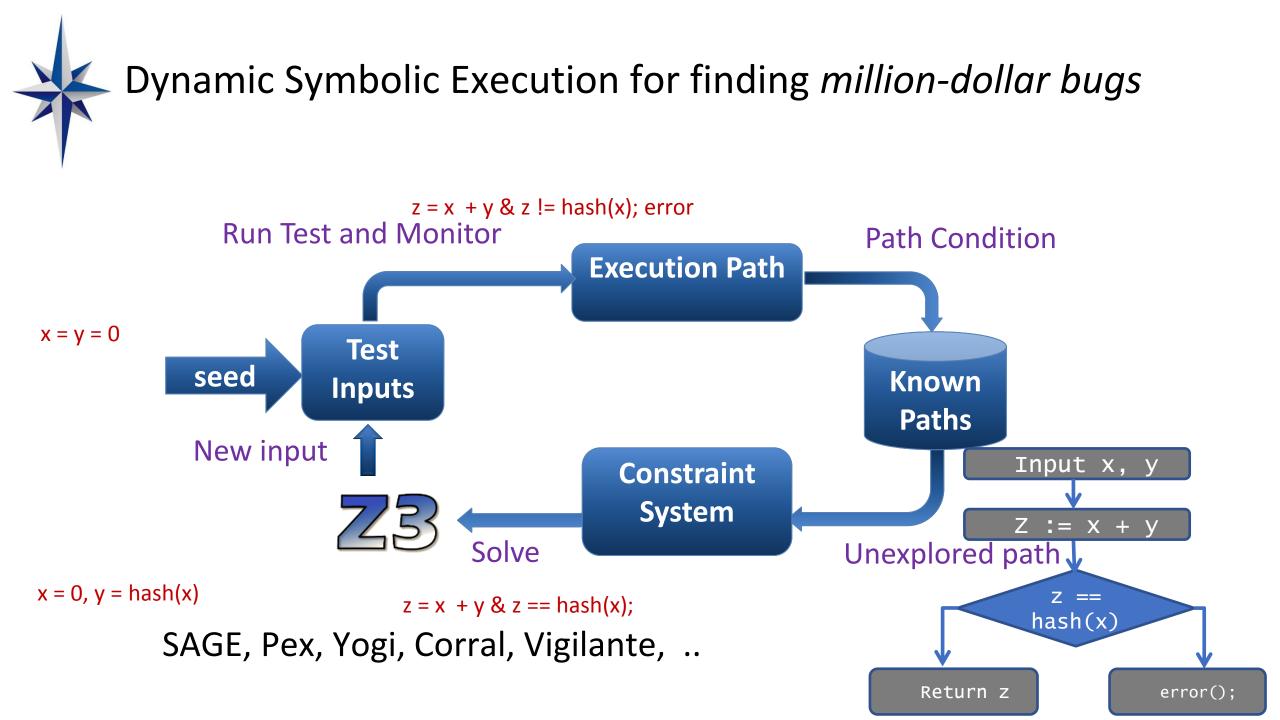
Some Microsoft Uses of $\mathbb{Z}\mathfrak{Z}$

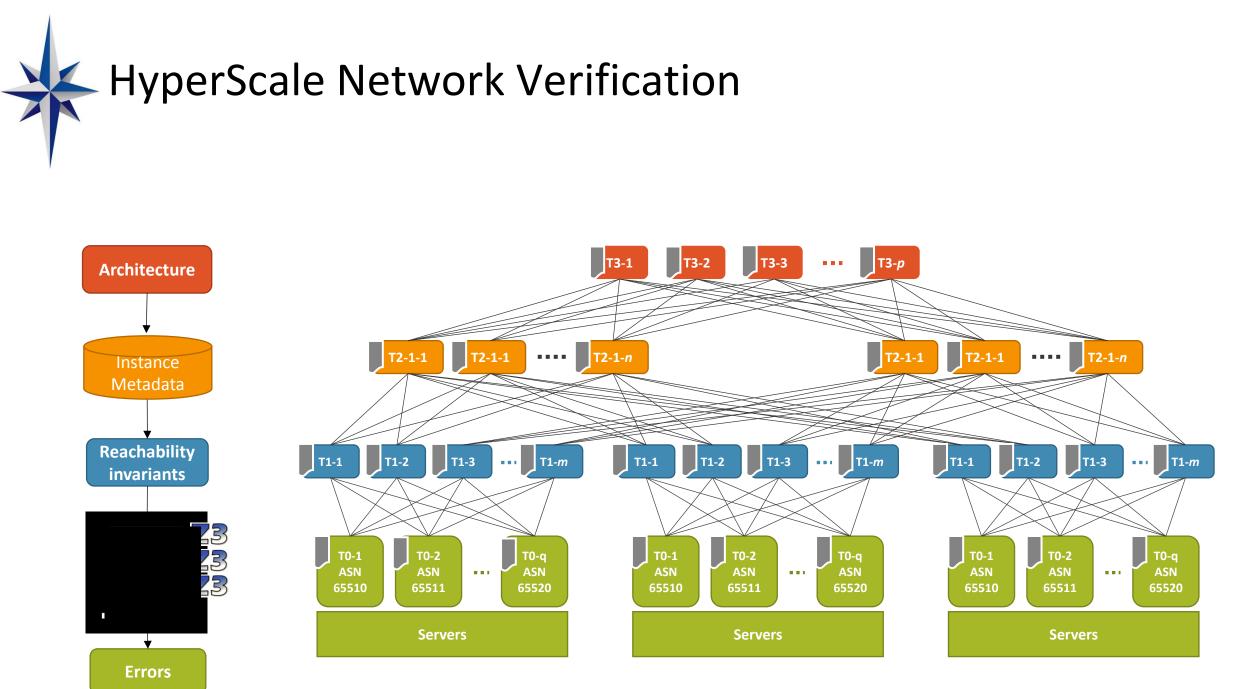


also: Dynamics Tax tool, Visual Studio C++ compiler, Blockchain, Static Driver Verifier, Pex

Verified C compiler for the Microsoft Hyper-Visor 2008-2012
 Verified TLS protocols, Crypto Libraries, Parsers. Project Everest 2016-2022







[Jayaraman et al SIGCOMM 2019]

Connectivity Restrictions

Forwarding Policies

Host Firewalls

Live monitoring of drift

Customer facing Network Security Groups

Pre-check before deployment

Major refactoring of Microsoft's Edge ACL

Design validation

Local Validation: The Scalability Trick

Root Cause Complexity

- Billions of pairs of ToRs
- Engineering challenge: Synchronized snapshot of FIBs

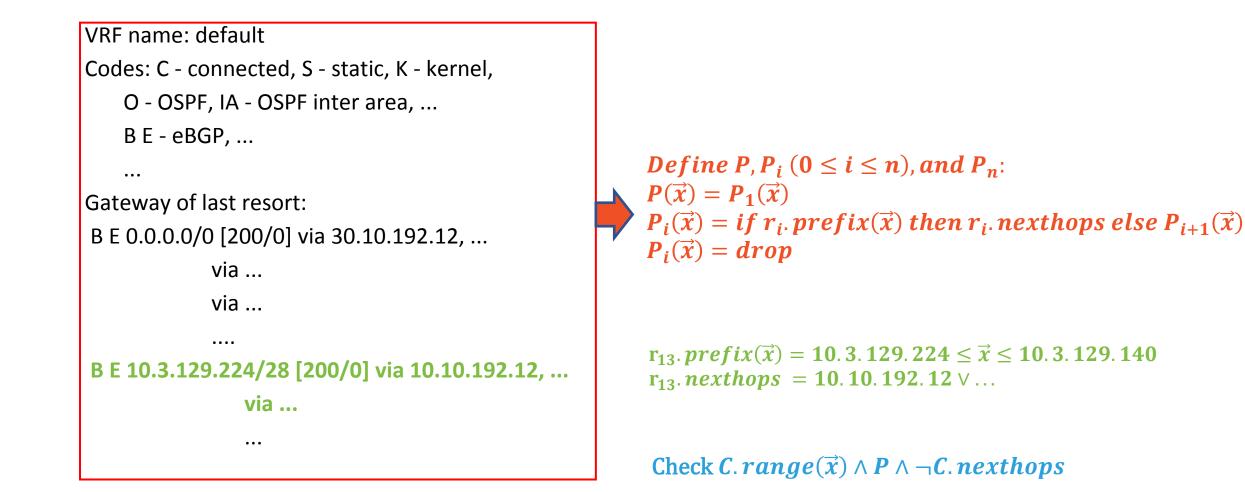
Key Insight

Exploit Azure network's regular structure

- Each router has a fixed role for a set of addresses
- Enough to verify role is enforced on each router

Decompose into **local contracts** Parallelize and scale

SMT-based Algorithm



ACL Verification Engine

remark Isolating private addresses 1 $(10.0.0.0 \le srcIp \le 10.255.255.255) \land$ deny ip 0.0.0.0/32 any 2 deny ip 10.0.0.0/8 any r_3 : 3 protocol = 4deny ip 172.16.0.0/12 any 4 deny ip 192.0.2.0/24 any 5 6 . . . remark Anti spoofing ACLs 7 deny ip 128.30.0.0/15 any 8 deny ip 171.64.0.0/15 any 9 10. . . remark permits for IPs without 11 port and protocol blocks 12 13 permit ip any 171.64.64.0/20 14 remark standard port and protocol $P_1(\vec{x})$ 15 $P(\vec{x})$ = blocks 16 tcp any any eq 445 17 deny $P_i(\vec{x})$ = udp any any eq 445 18 deny 19 deny tcp any any eq 593 20deny udp any any eq 593 $P_i(\vec{x})$ = 21. . . 22 deny 53 any any $P_n(\vec{x})$ 23 55 any any false denv =24 . . . remark permits for IPs with 25 26 port and protocol blocks permit ip any 128.30.0.0/15 27 permit ip any 171.64.0.0/15 28 29 . . .

 $r_i(\vec{x}) \lor P_{i+1}(\vec{x})$ if r_i . action = Allow $\neg r_i(\vec{x}) \land P_{i+1}(\vec{x})$ if r_i . action = Deny

I M A N D R A

Imandra is a cloud-native automated reasoning engine.

Imandra's groundbreaking AI helps ensure the algorithms we rely on are safe, explainable and fair.

TRY IMANDRA ONLINE

INSTALL IMANDRA LOCALLY

Spotlight on an Imandra user:

In 2017 Aesthetic Integration partnered with Goldman Sachs to help deliver the SIGMA X MTF Auction Book, a new orderbook venue implementing periodic auctions. Aesthetic Integration used Imandra, our own automated Verifying ReasonReact component logic — ReasonML & Imandra

4 September 2018

Recursive Function Unfolding

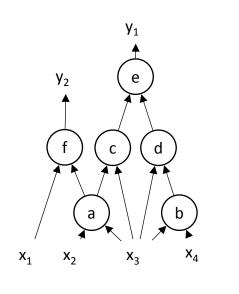
Algebraic ML Datatypes

Ground Arithmetic

https://try.imandra.ai/

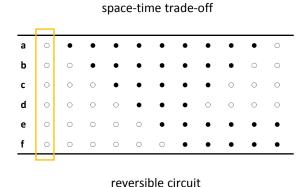
Quantum: Reversible pebbling game

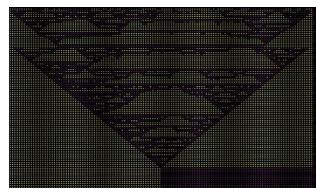
Example: find a pebbling strategy using 6 pebbles.

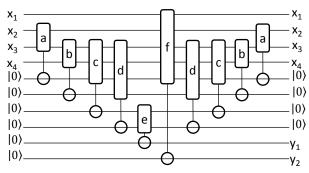


pebbling configurations		
$P_1 = \{ \varphi \},$		
P ₂ = {a},		
P ₃ = {a, b},		
P ₄ = {a , b, c},		
P ₅ = {a, b, c, d},		
P ₆ = {a, b, c, d, e},		
P ₇ = {a, b, c, d, e, f},		
P ₈ = {a, b, c, e, f},		
P ₉ = {a, b, e, f},		
P ₁₀ = {a, e, f},		
$P_{m} = P_{11} = \{e, f\}$		

pebbling configurations





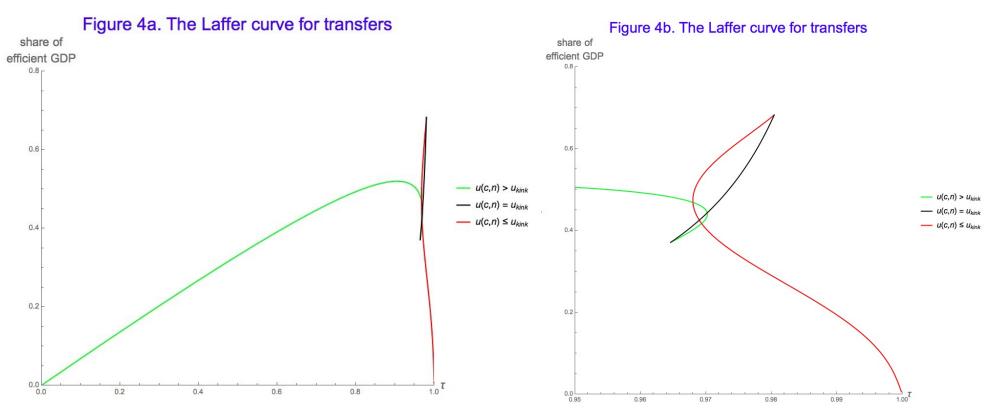


DATE-2019. Giulia Meuli Mathias Soeken, Giovanni De Micheli (EPFL), Martin Roetteler, B (Microsoft)

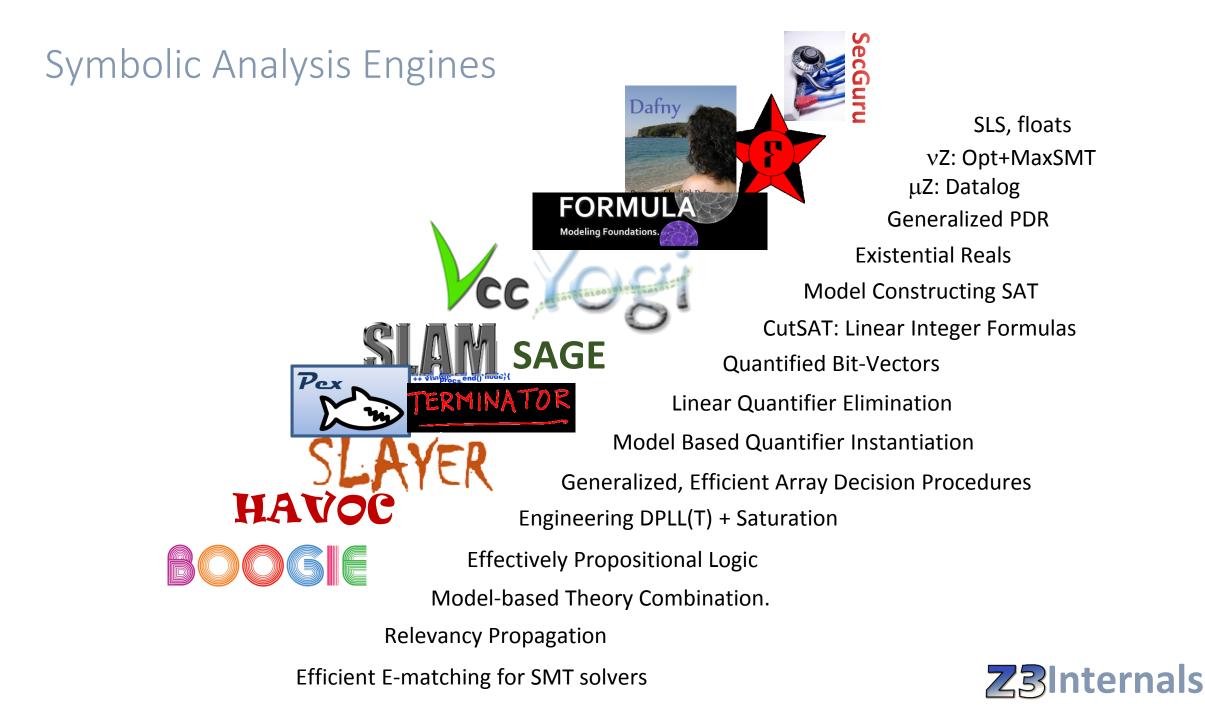
Example in Tutorial

Axiomatic Economics

Models of economics formulated using Non-linear Real Arithmetic



Casey Mulligan, University of Chicago, School of Economics uses Mathematica, Redlog, Z3 Example in Tutorial

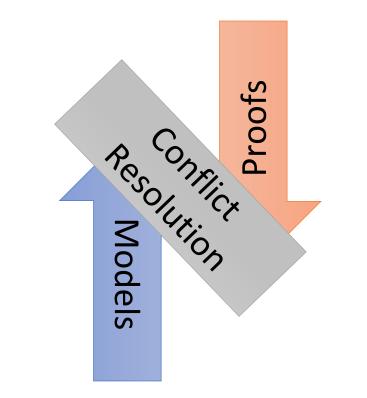


Model-based techniques in Automated Theorem Proving

Saturation x Search

Proof-finding

Model-finding



Two procedures

Resolution	DPLL
Proof-finder	Model-finder
Saturation	Search

Saturation: successful instances

Polynomial time procedures

Gaussian Elimination

Congruence Closure

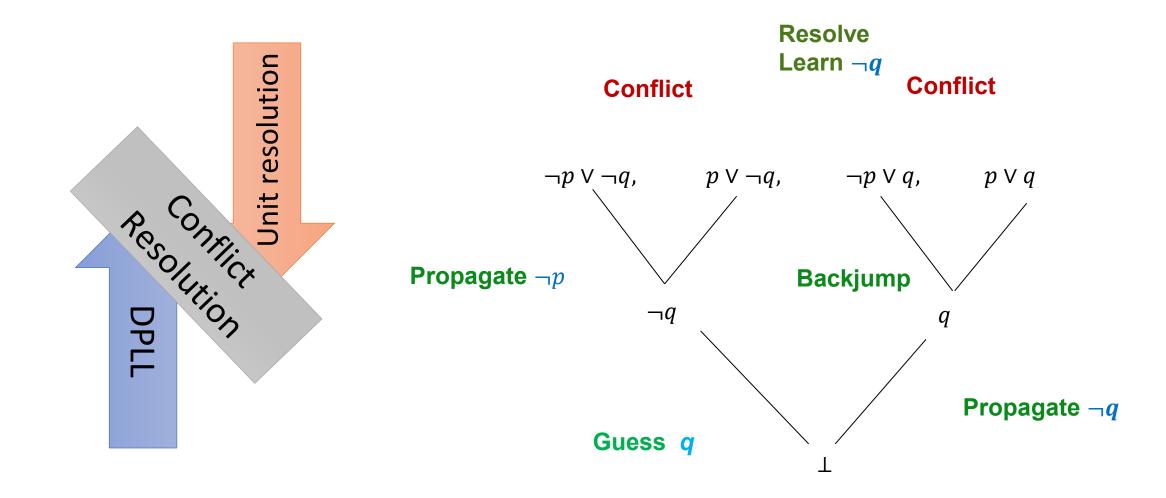
Search: successful instances

Decomposable Search Spaces

The "Cube" in "Cube & Conquer"

Some instances of model finding

CDCL: Conflict Driven Clause Learning



Linear Arithmetic

Fourier-Motzkin	Simplex
Proof-finder	Model-finder
Saturation	Search

Linear Arithmetic

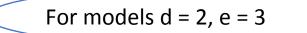
Saturation:

$$\frac{a \le x, b \le x, c \le x, x \le d, x \le e}{a \le d, a \le e, b \le d, b \le e, c \le d, c \le d}$$

Model Finding:

 $a \le x, b \le x, c \le x, x \le d, x \le e$

 $a \leq d, b \leq d, c \leq d, d \leq e$ $a \leq e, b \leq e, c \leq e, e \leq d$



For models d = 4, e = 3

Other examples (for linear arithmetic)

X

Generalizing DPLL to richer logics [McMillan 2009]

Fourier-Motzkin

Conflict Resolution [Korovin et al 2009]

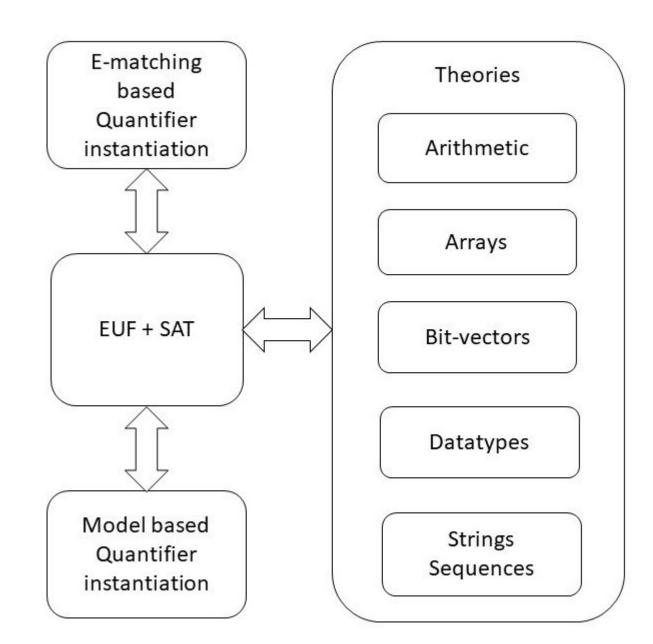
Unate Lemmas [Coton 2009]

Little engines of proof

Z3 Architecture

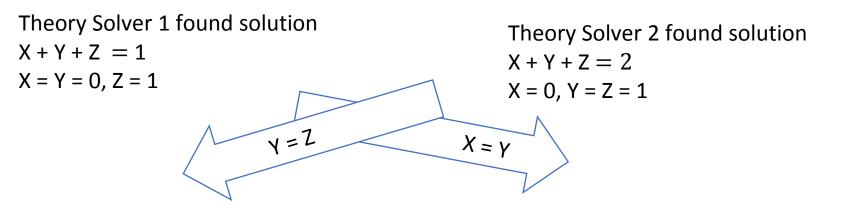
SMT = SAT + Theories

- SAT Solver handles search
- Theory Solvers handle theory reasoning
- Integration through equality sharing



Model-based theory combination

- Each theory constructs a candidate model
- Each model implies some equalities
- Propagate equalities implied by candidate model
- Use backtracking if theories cannot reconcile equalities



Model-based Quantifier Instantiation

```
Assume we are given \psi \wedge \forall x \ \varphi[x],
then use model for \psi as starting point
for search of instantiations of \forall x \ \varphi[x]
```

```
(declare-fun f (Int) Int)
(declare-const a Int)
(declare-const b Int)
```

```
(assert (forall ((x Int)) (> (f x) (f a))))
```

```
(assert (> (f b) (f a)))
```

```
(check-sat)
```

 $\psi: \quad f(b) > f(a)$

 $\varphi[x]: f(x) > f(a)$

Candidate model:

 $a \coloneqq 0, b := 1, f(x) \coloneqq x = 0$? 1: 2

Model check:

is
$$\underbrace{f(x)}_{x=0?1:2} \leq \underbrace{f(a)}_{=1}$$
 SAT?

Yes, set x = a = 0

Model-based Quantifier Instantiation

Assume we are given $\psi \wedge \forall x \ \varphi[x]$, then use model for ψ as starting point for search of instantiations of $\forall x \ \varphi[x]$

```
s.add(\psi)
while True:
    if unsat == s.check():
        return unsat
    M = s.model()
    checker = Solver()
    checker.add(\neg \varphi^M[x])
    if unsat == checker.check()
        return sat
    M = checker.model()
    find t, such that x \not\in t, t^M = x^M.
    s.add(\varphi[t])
```

 $t^M = x^M$ is not a strict requirement.

It is sufficient to use M to mine for a term t that still satisfies $\varphi[t]$

[Ge, de Moura CAV 2009, ..]

Generalized, Efficient Array Decision Procedures

Array store and read operations (a [i]), and

$$\operatorname{\mathsf{rules such as:}} \begin{array}{l} \operatorname{\mathsf{idx}} \frac{a \equiv store(b,i,v)}{a[i] \simeq v} \\ \Downarrow \frac{a \equiv store(b,i,v), \quad w \equiv a'[j], \quad a \sim a'}{i \simeq j \lor a[j] \simeq b[j]} \\ \Uparrow \frac{a \equiv store(b,i,v), \quad w \equiv b'[j], \quad b \sim b'}{i \simeq j \lor a[j] \simeq b[j]} \\ \operatorname{\mathsf{ext}} \frac{a:(\sigma \Rightarrow \tau), \quad b:(\sigma \Rightarrow \tau)}{a \simeq b \lor a[k_{a,b}] \not\simeq b[k_{a,b}]} \end{array}$$

Model-based filters for restricting the application of these rules while retaining completeness.

[de Moura & B, FMCAD 2009]

K(v)[i] = v

 $map_f(a_1,\ldots,a_n)[i] = f(a_1[i],\ldots,a_n[i])$

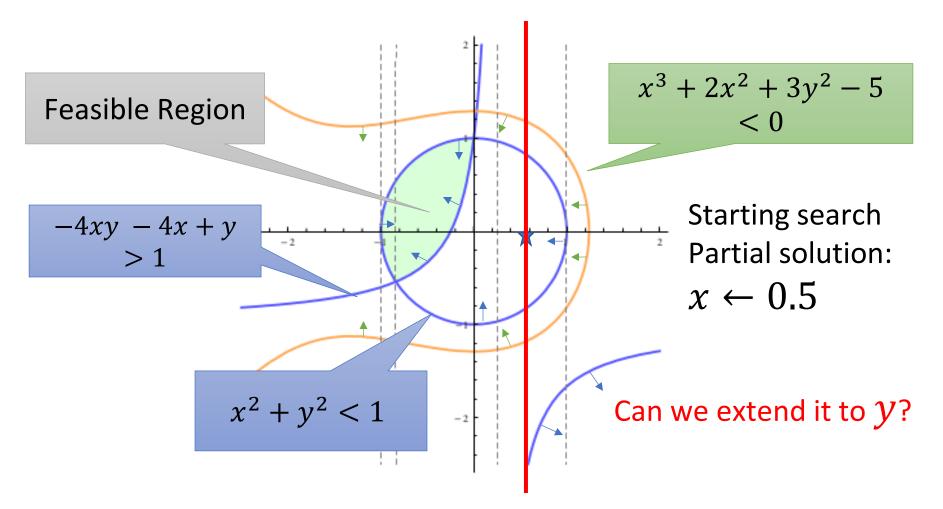
Polynomial Constraints

$$x^{2} - 4x + y^{2} - y + 8 < 1$$

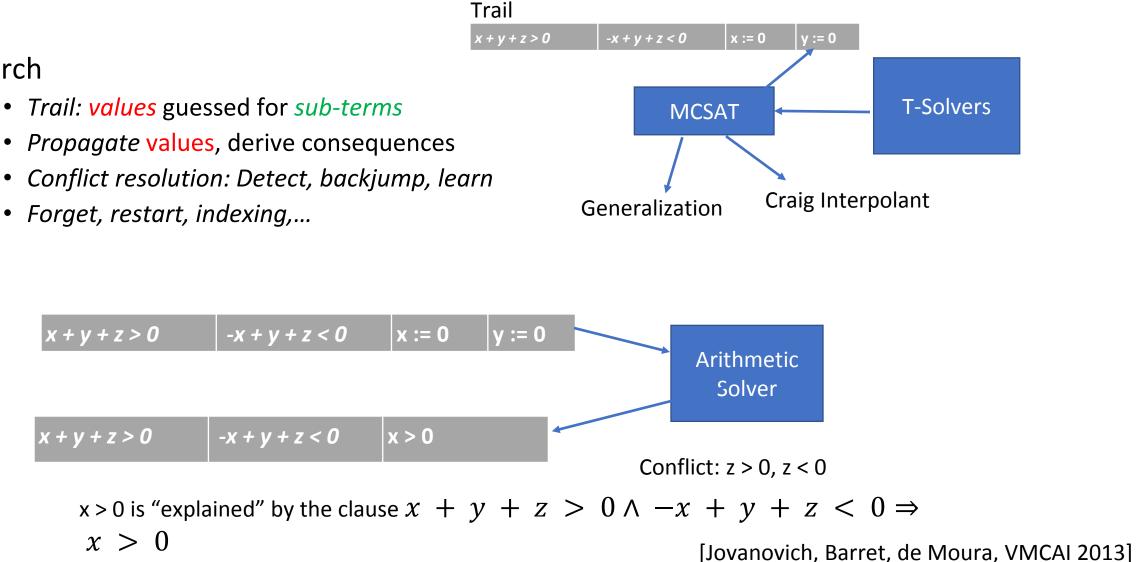
$$xy - 2x - 2y + 4 > 1$$

NLSAT

Key ideas: Use partial solution to guide the search



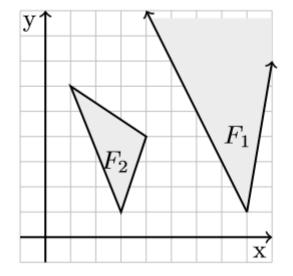
MCSat



Search

- *Propagate* values, derive consequences
- Conflict resolution: Detect, backjump, learn

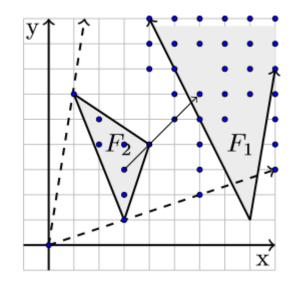
Solving LIA* using approximations - models and interpolants



 $F_1: y + 2x \ge 17 \land 6x - y \le 47$

 $F_2: 5x + 2y \ge 17 \land 3x - y \le 8 \land 2x + 3y \le 20$

 $F_1 \wedge F_2$ is UNSAT



$$F_2^* : \exists x_1, y_1 x_2, y_2, \dots$$

$$F_2(x_1, y_1) \land F_2(x_2, y_2) \land \dots \land F_2(x_k, y_k) \land$$

$$x = \sum x_i \land y = \sum y_i$$

 $F_1 \wedge F_2^*$ is SAT

[Levatich, B, Piskac, Shoham, to appear VMCAI 2020]

Solving LIA* using Approximations

Claim: F_2^* can be expressed in LIA

Claim: F_2 can be expressed as $\vec{x} \in \bigcup_i a_i + B_i^*$ i.e., every LIA formula is a finite union of semi-linear sets.

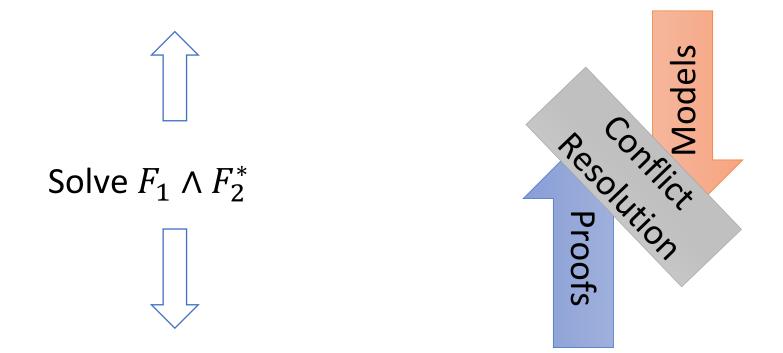
Justification: $F_2^*(\vec{x}) \coloneqq \exists \mu \lambda. (\vec{x} = \sum_i \mu_i a_i + \lambda_i B_i) \land \land_i (\mu_i = 0 \rightarrow \lambda_i = 0)$

Brute force solver: express F_2^* using semi-linear sets, then use LIA solver

Catch: completely impractical

Solving LIA* using Approximations

Establish under-approximation $U^* \rightarrow F_2^*$ such that $U^* \wedge F_1$ is SAT



Establish over-approximation $F_2^* \rightarrow O^*$ such that $O^* \wedge F_1$ is UNSAT

Under-approx $U^* \to F_2^*$ such that $U^* \wedge F_1$ is SAT

Initially, $U \coloneqq \emptyset$, $U^* \coloneqq (x, y) = (0, 0)$

Maintain, $U = \bigcup_i a_i + \lambda B_i$ under-approximates F_2 and set $U^*(\vec{x}) \coloneqq \exists \mu \lambda$. $(\vec{x} = \sum_i \mu_i a_i + \lambda_i B_i) \land \Lambda_i(\mu_i = 0 \rightarrow \lambda_i = 0)$

Find
$$x, y: U^*(x_0, y_0) \land F_2(x, y) \land \neg U^*(x_0 + x, y_0 + y)$$

Add (x, y) to U, reduce vectors using new element

Over-approx $F_2^* \rightarrow O^*$ such that $O^* \wedge F_1$ is UNSAT $U_0 \coloneqq \{ (x, y) | U^*(x, y) \}$ $U_{i+1} \coloneqq U_i \cup \{ (x_1 + x_2, y_1 + y_2) \mid U_{i+1}(x_1, y_1) \land F_2(x_2, y_2) \}$ $B_0 \coloneqq \{ (x, y) | F_1(x, y) \}$ $B_{i+1} \coloneqq B_i \cup \{ (x_1 + x_2, y_1 + y_2) \mid B_{i+1}(x_1, y_1) \land F_2(x_2, y_2) \}$ U_0 U_1 B_2 U_2 B_1 B_0

Over-approx $F_2^* \rightarrow O^*$ such that $O^* \wedge F_1$ is UNSAT

Initially $O^* := true$

Interpolate

$$U^*(x_0, y_0) \wedge F_2(x_1, y_1) \rightarrow I(x_0 + x_1, y_0 + y_1),$$

 $I(x, y) \rightarrow (F_2(x_2, y_2) \rightarrow \neg F_1(x_2 + x, y_2 + y))$

Add conjunctions from *I* to O^* that are inductive, that is: $O^*(x, y) \wedge F_2(x_1, y_1) \rightarrow O^*(x + x_1, y + y_1)$

Solving LIA* using Approximations

Q:

Can we leverage duality fully?

We were only exploiting the duality in one direction:

Under-approximation U* used to strengthen O*

But O* was not used to weaken U*

QSAT – Playing with Models and Cores

Instantiated to theories

- Linear real arithmetic
- Linear integer arithmetic
- Algebraic datatypes
- Non-linear real arithmetic
- (Bit-vectors)

Q: What is a good approach to learn strategies?

Q: Mixing theories and beyond theories that admit QE?

QSAT – Playing with Models and Cores

Two players

- $\exists : \exists x_1 \forall y_2 \exists x_3 \forall y_4 F$, $F_1 \leftarrow F_3 \leftarrow F$
- $\forall: \forall x_1 \exists y_2 \forall x_3 \exists y_4 \neg F \qquad F_2 \leftarrow F_4 \leftarrow \neg F$

State:

- A model, M,
 - for oponents solution
- A strategy, S,

Example move:

- $F_3 \wedge S \wedge M$ is UNSAT
- Core \leftarrow Some UNSAT Core of $F_3 \land M \land S$
- $\exists C \leftarrow \text{Model-based projection of } \exists y_2 \ Core$
- $F_1 \leftarrow F_1 \land \neg \exists C$
- Play game at level 1
- function declaring how opponent would assign its variables in response
- Example
 - It is x_3 's turn
 - **M** says $x_1 = 5, y_2 = 3$
 - **S** says $y_4 = x_3 + 2$

Summary

- SMT solvers have come into quite wide-spread use in the past decade
 - Thanks to a large span of applications and technical advances
- Many solving techniques exploit duality of model search and deduction
 - Harnessing the interplay remains a throve of future opportunities
 - Beyond model-based techniques:
 - "Cubing": Establish problem decomposition
 - "Strategies": Prune search space that is no more likely to produce solutions

Research Question: Guiding Search

Problem: Tuned engines are prone to *overfitting*

State of art: Tune input parameters (using ML) and code back-off schemes

Opportunity: Use data-driven techniques to re-direct search

Learning cubes using DNNs

Goal: Choose most important case split

Train DNN using unsat formulas:

• Log conflict clauses

[Selsam, B. SAT 2019]

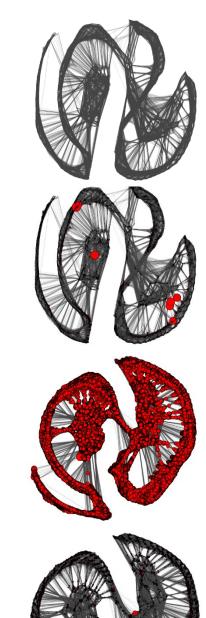
- Use DRAT-Trim to extract unsat core
- Score(v) := if v in core then 1 else 0.

Idea: only variables in a core are useful to case split on

DNN architecture: NeuroSAT (a graphical Neural Network)

Experiment:

- Generated 100,000 unsat problems from SAT competition 2014-2017
- Trained network with cores from the training set
- Integrated in SAT solvers glucose, MiniSAT, Z3 by *periodically refocusing* case split queue
- Evaluated on SAT2018
- Solved +10%/+20% more

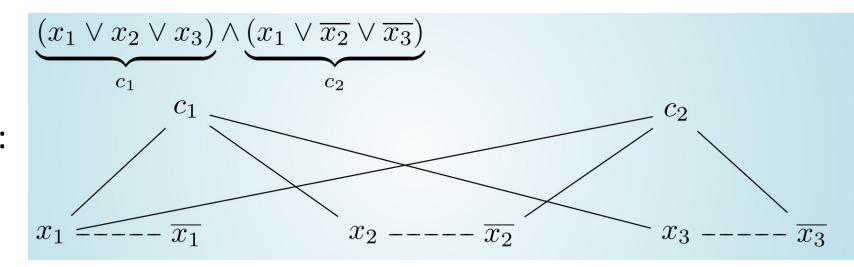


Background and Learnings

- Clauses:
- Graphical Network:
- DRAT proof Trail:

:\z3\release>z3 core.cnf sat.drat.file=f.out

D:\z3\release>type f.out | more 8783 9288 8770 8619 0 -2031 8873 9813 9765 8618 0 8785 73 8747 0 -3258 -3564 -3558 9802 -3553 0 9802 -3558 -3564 10024 0 9809 -3558 10025 -3564 10024 0 8520 10242 0 10128 8520 -1777 0 -1770 8967 1797 0 2432 4302 0 999 2575 8141 8381 8132 0 4945 9795 0 -8583 0 8751 0



- Learning: Access to DRAT proof trail enables 20/20 hindsight for optimization. Makes RL less relevant.
- Future: We could explore space of objective functions much more and instance specific uses.

Research Question: Scaling Search

Problem: How to use cloud resources to solve really-hard problems?

State of art: Cube & Conquer in SAT solvers, Branch & Bound in MIP

Opportunity: Use Azure infrastructure for scalable Cube & Conquer for SMT

Cube, Cloud and Z3

Rahul Kumar (MSR) Miguel Neves (U Lisboa)

