
FEMEngine: finite element method implemented in
C++ code based on functional and template

metaprogramming

Gurin A.M.1, Baykin A.N.1, Polyansky T.A.2, Krivtsov A.M.3,4

1Lavrentyev Institute of Hydrodynamics of SB RAS
2Novosibirsk State University

3Peter the Great St. Petersburg Polytechnic University (SPbPU)
4Institute for Problems in Mechanical Engineering

1 / 20

Finite Element Method

Laplace equation
∆T = 0 ∈ Ω ; T |∂Ω = T∂Ω

Weak form∫
Ω

∇T · ∇ψ dΩ = 0

Interpolation

T (X) =
∑Np

i=1 Tiϕi

System of linear equations∑Np

i=1 Ti
∫
Ω

∇ϕi · ∇ϕj dΩ = 0

j = 1, ..., Np ; Np – number of
nodes

The finite element method is widely
used to solve systems of partial
differential equations that are
represented in the weak formulation

Shape functions

2 / 20

Stiffness matrix assembly

System of linear equations
[K]{T} = 0

Assemble of global stiffness matrix

Mk
ij =

∫
Ωk

∇ϕi · ∇ϕj dΩ

i = 1, ..., ep , j = 1, ..., ep k = 1, ..., N

[K] = [A]T diag([M1], ..., [MN])[A]

N – number of elements
ep – number of nodes on
element
[A] – transformation matrix
from local to global

Shape functions on triangle element

3 / 20

Shape functions on a 2D triangular element

Shape functions on a canonical element

ϕ0(ξ, η) = −η − ξ + 1

ϕ1(ξ, η) = ξ

ϕ2(ξ, η) = η

Integral calculation over a canonical
element ∫

Ωk
ϕi(x, y)ϕj(x, y)dxdy∫

ecan
ϕi(ξ, η)ϕj(ξ, η)|Jk|dξdη∫

ϕiϕj →

∫ ϕ0ϕ0

∫
ϕ0ϕ1

∫
ϕ0ϕ2∫

ϕ1ϕ0

∫
ϕ1ϕ1

∫
ϕ1ϕ2∫

ϕ2ϕ0

∫
ϕ2ϕ1

∫
ϕ2ϕ2

Triangle element

4 / 20

Numerical quadrature

∫
ecan

ϕ(ξ, η)dξdη =

ng∑
i=1

ϕ(ξi, ηi)ωi

i ξi ηi ωi

0 1/6 1/6 1/6
1 2/3 1/6 1/6
2 1/6 2/3 1/6

5 / 20

C++ standards

C++11
lambda functions
move semantics (rvalue
references)
constexpr
initializer lists
type inference (auto keyword)
uniform initialization
variadic templates
tuples
type traits
static_assert

C++14
function return type deduction
generic lambdas
tuple addressing via type

C++17
Structured bindings
constexpr if
fold expressions

6 / 20

C++ standards

C++11
lambda functions
move semantics (rvalue
references)
constexpr
initializer lists
type inference (auto keyword)
uniform initialization
variadic templates
tuples
type traits
static_assert

C++14
function return type deduction
generic lambdas
tuple addressing via type

C++17
Structured bindings
constexpr if
fold expressions

7 / 20

Lambda functions

Shape functions are implemented
in the code as lambda functions
Functions receive tuples
consisting of the local
coordinates ξ, η as input
The lambda function is stored in
a static variable inside of the
element class

8 / 20

Function traits

The function_traits class can
determine lambda function
arguments and return type at
compile time
Argument types are contained in
type of type alias “Args”
std::tuple<Args...>

Template argument <Args...>
can contain any number of types

9 / 20

Multiplication of functions

The higher order function
“multiply” expects for input two
functions f1, f2 with the same
arguments
The function traits class finds
out the types and the number of
arguments of the first function
The higher order function
returns a lambda with the same
arguments as in functions f1, f2

10 / 20

Simplified pseudocode of the higher order function “multiply”

C++ variadic template
metaprogramming code is too
complex and contains too much
boilerplate code
Here, the functional concept of
“multiply” function is represented
in simple pseudocode
Function implements the
mathematical operation
f1(X) · f2(X)

11 / 20

Pseudocode of the higher order function “cartesian product”

The “tensorProd” function takes
two tuples of functions and
returns a matrix of functions
represented by a tuple of tuples
Implements the mathematical
operation ϕ⊗ ϕ

12 / 20

Pseudocode of the higher order function “integrate”

The “integrate” function takes as
input a function to be integrated
and a numerical quadrature
(nodes and weights)
Returns a function which
calculates the integral if a
Jacobian is provided
Implements the mathematical
operation

∫
Ωk
f(~r)dΩ

13 / 20

Treatment of a nonlinear coefficient

∫
Ω

T 2∇T · ∇ψ dΩ = 0∑Np

i=1 Ti

∫
Ω

(∑Np

k=1 T
old
k ϕk

)2

∇ϕi · ∇ϕj dΩ = 0

The “interpolate” function
takes as input a nonlinear
coefficient to be interpolated
and a shape functions
Returns a function which
calculates nonlinear
coefficient at the “r”
coordinate of the canonical
element if the values of
unknowns in the coefficient
are provided
Implements the
mathematical operation(∑Np

k=1 T
old
k ϕk

)2

14 / 20

Local matrix generation algorithm∫
Ω

T 2ϕi · ϕj dΩ

The higher order functions
generate the matrix of
functions “elementMatrixF”
This matrix of functions
generate local stiffness
matrix if called with
Jacobian and pack of T
values [T1, T2, T3]

15 / 20

Disassembly of code

∫
Ω

Tϕi · ϕj dΩ ; i = 1, 2, j = 1, 2

Disassembly of the code which calculates
local stiffness matrix and output it to the
standard output stream is presented on the
slide
There are no function calls and class
instances such as a “tuple” in this code
C++ compiler efficiently optimized the code
generated by the methods described on
prevoius slides

16 / 20

Test on solution of Poisson equation

∫
Ω

∇T · ∇ϕdΩ = −12x− 12y − 12z

17 / 20

Comparison with FEniCS and FreeFEM++

Tetrahedral mesh 41x41x41
nodes, 384000 elements
Same mesh for all solvers

Solver Calculation of [K], s
FEniCS 0.21

FEMEngine 1.07
FreeFem++ 8.32

18 / 20

Conclusions

The C++ template metaprogramming library for finite element
analysis FEMEngine is developed.
The template metaprogramming along with the functional approach
has a great potential for the finite element code development. These
programming techniques make it possible to write a reliable, generic
and efficient code.
The matrix construction time between the FEMEngine and the
FreeFEM++ is compared and 8 times advantage is achieved. The
comparison with FEniCS FEM code shows that there is a potential to
optimize the bottlenecks of the current matrix assembly algorithm.

19 / 20

Future release of the source code

FEMEngine source code will be released soon under an open source
license. If you are interested to try it, then write to this email:

"aleksej.gurin00@gmail.com" and we will send you a link to the
repository when its ready.

20 / 20

