IVANNIKOV ISP RAS OPEN CONFERENCE

Large Eddy Simulation of turbulent circular jet using OpenFOAM

E.A. Kalaushina^{1,2}, A.A. Smirnovsky^{1,2}, D.S. Brovin¹, E.V. Kolesnik²

¹ STR Group Inc.

² Peter the Great St.Petersburg Polytechnic University

2019

Motivation

- Siemens technology (based on chemical vapor deposition) is widely used for polysilicon production
- Silicon containing gas mixture is supplied by turbulent jet
- Heat exchange and mass transport are determined by turbulent fluctuations
- Numerical modeling is required to improve reactor characteristics

Polysilicon deposition reactor

Mathematical model and numerical method

1. Models

- LES WALE model
- Implicit LES (ILES) approach
- 2. Codes
 - OpenFOAM (PIMPLE solver from incompressible group)
 - SINF/Flag-S (original version of the implicit fractionalstep method to advance in physical time)
- 3. Numerical schemes: LUST, QUICK, Linear Upwind, Linear
- 4. The approximation of the time derivative was carried out with the second-order scheme "backward"

Mesh

1. Original mesh: 1.3 mln cells Typical cell size ~ 0.004 m, 22 cells/ D_j 2. Fine mesh: 11 mln cells Typical cell size ~ 0.002 m, 40 cells/ D_j 3. Coarse mesh: 0.2 mln cells Typical cell size ~ 0.08 m, 12 cells/ D_j

cross section near outlet

longitudinal section near inlet

Instantaneous and averaged distributions of velocity magnitude

Instantaneous and averaged distributions of velocity magnitude

Instantaneous and averaged distributions of velocity magnitude

The distribution of longitudinal component of the averaged velocity along the jet axis

 x/D_i

Grid sensitivity

Influence of time step

The distribution of the RMS-fluctuation 0.2 Fine mesh of longitudinal velocity component along the jet axis • Exp. Djeridane et al. $-\Delta \tau = 0.46$, $CFL_{x/Dj = 20} = 1.6$ $-\Delta \tau = 0.23$, $CFL_{x/Dj = 20} = 0.8$ $-\Delta \tau = 0.11$, $CFL_{x/Di} = 20 = 0.4$ $-\Delta \tau = 0.06$, $CFL_{x/Di} = 20 = 0.2$ 0.3 0.25 25 5 15 2030 35 1040 0 0.2 x/D_i 0.12 0.15 The distribution of the RMS-fluctuation 0.1 of longitudinal velocity component

0.05

0

0

0.5

1

1.5

r/r1/2

2

2.5

3

along the radius in the section $x/D_{i} = 20$

0.15

0.1

0.05

 U_{RMS}/U_j

Courant number sensitivity

The distribution of the RMS-fluctuation of longitudinal velocity component along the radius in the section $x/D_i = 20$

Conclusion

- For accurate modeling of averaged characteristics it is recommended to use original (22 cells/D_j) or coarse (12 cells/D_j) mesh
- For accurate modeling of fluctuation characteristics it is recommended to use fine (40 cells/D_i) mesh
- ➢ It is possible to use time step corresponding CFL_{max} ~ 10, but it is desirable to achieve CFL < 1 at the main jet region
- Results obtained by LES WALE and ILES are almost similar
- Influence of considered numerical schemes on the solution is quite small, except linear scheme, which gives non-physical pulsations
- The LUST or QUICK scheme is recommended to use in LES
- The small solution sensitivity to the synthetic generator parameters was also observed

The longitudinal component of the RMS-fluctuation velocity field for solutions obtained by **OpenFOAM** (a) and **SINF/Flag-s** (b)

Modeling Solutions for Crystal Growth and Devices

