
Petr Pleshachkov, petr@hazelcast.com

Hazelcast: distributed data
structures to scale your app
out!

Hazelcast

• The leading open source Java in-memory data grid

• https://github.com/hazelcast, Apache 2 License

• Distributed and elastic Java collections and concurrency
primitives

• Map, Queue, Set, List, etc

• IAtomicLong, IAtomicReference, ISemaphore and FencedLock

• Distributed computations

• Distributed ExecutorService, EntryProcessor, messaging, etc

https://github.com/hazelcast

Distributed in-memory Data Grid

• Distributed caching

• Keeping data in local JVM

• Fast access and processing

• NearCache

• Elastiс scalability, high throughput and low latency, high
availability

• Data partitioning and distribution

• Data replication across cluster to tolerate failures

IMap

class IMap<K, V> extends ConcurrentMap<K, V> {

 void put(K key, V value) {

 // write key/value somewhere in the cluster

 }

 V get(Object key) {

 // find value associated with the key

 }

}

IMap basics

public class DistributedMap {

 public static void main(String[] args) {

 HazelcastInstance hz = Hazelcast.newHazelcastInstance(new Config());

 ConcurrentMap<String, String> map = hz.getMap("my-distributed-map");

 map.put("key", "value");

 map.get("key");

 //ConcurrentMap methods

 map.putIfAbsent("somekey", "somevalue");

 map.replace("key", "value", "newvalue");

 }

}

Data Partitioning

• Fixed number of partitions (default 271)

• Each key falls into a partition

partitionId = hash(key) % PARTITION_COINT

• Partition ownerships are reassigned upon membership
change

• Backup partition for redundancy

Data Partitioning (2)

Node 1

R3 R3

R5 R5

Node 2

R1 R1

R6 R6

Node 3

R4 R4

R2 R2

• Repartitioning occurs
when a node
joins/leaves the cluster

• All nodes are equal and
redundant

• The minimum amount
of partitions will be
moved to scale out

P1

P2

P3

P4 P6

P5

Topology

HZ Node 2

App

JVM

HZ Node 3

App

JVM

HZ Node 1

App

JVM

Embedded Topology

HZ Node 2

App

JVM

HZ Node 3

App

JVM

HZ Node 1

App

JVM

Entry Processor

public class EntryProcessorMain {

 public static void main(String[] args) {

 HazelcastInstance hz = Hazelcast.newHazelcastInstance();

 IMap<String, Integer> map = hz.getMap("map");

 map.put("key", 0);

 map.executeOnKey("key", new IncEntryProcessor());

 System.out.println("new value:" + map.get("key"));

 }

 public static class IncEntryProcessor extends

AbstractEntryProcessor<String, Integer> {

 public Object process(Map.Entry<String, Integer> entry) {

 int oldValue = entry.getValue();

 int newValue = oldValue + 1;

 entry.setValue(newValue);

 return null;

 }

 }

}

Data Code

Read data

Write data

BAD: send Data to Function

Data Code
Write function

Good: send Function to Data

Cluster management

• A Hazelcast cluster is managed by a single node, which is
called the master.

• Hazelcast master election is simple and practiacal.

• The oldest member in the cluster becomes the master node.

• Hazelcast maintains two pieces of information about the
cluster: member list and partition table.

Cluster management (2)

● Member failures are detected by socket errors and heartbeat timeouts.

● When a failure is detected, that member is marked as suspect.

● From a member’s view, if all members before itself in the list are

suspect;

○ That member claims its mastership.

○ It forms a cluster with the members that accept its claim.

○ Members which don’t accept or respond to the claim are

excluded in the cluster, and they eventually become split.

Replication challenges

• Where to perform reads and writes?

• How to keep replicas sync?

• How to handle read/write concurrency?

• How to handle failures?

CAP theorem

• Consistency

• Availability

• Partition tolerance

• Eric Brew’s CAP theorem implies that in the presence of a
network partition, one has to choose between consistency and
availability.

• CP versus AP

AP system

Node 1

COPY1

Node 2 Node 3

COPY3 COPY3 COPY2 COPY2

Client1 Client2

CP system

Node 1

COPY1

Node 2 Node 3

COPY3 COPY3 COPY2 COPY2

Client1 Client2

X

Consistency/Latency trade-off

Node 1
Node 2

R2 R2

App

R1 R1 Stale copy P1 Up to date copy

P2

JVM JVM

PACELC theorem

• CAP theorem is relevant only in a rare case of network
partitioning

• Daniel Abadi’s PACELC theorem:

• If there is partitioning (P), choose between consistency (C) and
availability (A)

• Else (E), during normal operation, choose between latency and
consistency (LC)

Replication in Hazelcast

● Operations are sent to primary copy
● All operations on the same partition are handled by the

same thread
● Strong consistency when primary is reachable
● A primary copy is elected for every partition
● Lazy replication model

○ The async mode works as fire and forget

○ In sync mode, the caller block until replica updates are applied and

acknowledgments are sent back to the caller

● High throughput and availability

Split-brain syndrome

Node 1

COPY1

Node 2 Node 3

COPY2 COPY2

Client1 Client2

COPY3

map.get(key)
map.get(key)

● Strong consistency is
lost!

● Merge policies are
needed!

Split-brain merge policy

public interface SplitBrainMergePolicy<V, T extends MergingValue<V>>

 extends DataSerializable {

 V merge(T mergingValue, T existingValue);

}

● DiscardMergePolicy, LatestUpdateMergePolicy,
LatestAccessMergePolicy, HigherHitsMergePolicy, etc.

● Merging may cause lost updates!

Hazelcast is AP/EC

● Consistency is traded to availability, AP
● Consistency - latency trade-off is minimal during normal

operation, EC

NearCache

● NearCache mechanism mitigates latency concern
○ Retains data on the client process which requested it
○ Second request processed locally
○ Updates asynchronously broadcasted to the clients

● NearCache is eventually consistent!

COPY1

Node 2

map.get(key)

COPY2 COPY2

 Client COPY3 COPY3

Hazelcast CP susbstem

● Concurrency APIs on top of the Raft consensus algorithm

● CP with respect to the CAP principle

● Linearizability in all cases, including client and server failures,
network partitions

● Prevent split-brain syndrome

● Verified via extensive Jepsen test suite

● IAtomicLong, IAtomicReference, ISemaphore, and FencedLock

● https://github.com/hazelcast

● petr@hazelcast.com

Thanks

https://github.com/hazelcast/hazelcast

