

Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)

The study of neurodynamic systems of continuous adaptive control

Vladimir Sudakov, <u>sudakov@ws-dss.com</u> Vladimir Osipov, Alexander Vasilyev, Yuri Nechaev

WS-DSS.COM

	🗎 ws-dss.com	Ċ	0 1
Jobs Models About the author Students	Administration		1 G
Welcome to Web Services for Decision Sup	port Systems!		
On this portal there are a lot of methods to support decision-making and ope methods are available for free through RESTful API after registrations.	rations research including method	ds of multiple-criteria decision analy	sis and optimization methods. All
Download RESTful API manual Example			
Main available methods:			
Method	Description		
aircraft_schedule			
ant_colony	The solution to the problem of input data are represented as: name of the destination of the 1": < arc length >, "the name	f finding the shortest path in a graph : { "from_vertex" : " <the name="" of="" the<br="">e final vertex>", "graph":{ "name initi of the incoming vertex 2": <the leng<="" td=""><td><pre>by the ant colony method. The initial vertex>", "to_vertex" : "<the al vertices": { "name input vertices th of the arc> }, } }</the </pre></td></the></the>	<pre>by the ant colony method. The initial vertex>", "to_vertex" : "<the al vertices": { "name input vertices th of the arc> }, } }</the </pre>
bellman_ford	Realization of the Bellman-For problem of finding the shortes weighted graph from the select feature is its applicability to gr an array of edges "graph" eac weight of the edge; the numb variable "isDirect" which can the not. Software implementation	rd algorithm. The Bellman-Ford algorithm fin st path on a graph. The algorithm fin cted source vertex to all other vertic raphs with arbitrary including negative ch of which consists of the vertex "fr er of the initial vertex "vertex" for what take the values 1 and 0, depending of the the values 1.	writhm is designed to solve the ds the shortest distance for a given es of the graph. Its distinctive we weights. The input data contain: com", the vertex "to" and the hich the search is performed; the on whether the graph is oriented or
concordance			
consistency_increase			
eulerian_path	Search for the Eulerian path ir Optional parameter: the numb	n an undirected graph. It's necessary per of the initial vertex. {"Graf": [[1,2]	y to specify an array of edges. , [2,3]], "initial": 1}

Models in WS-DSS

•		l ws-dss.c	com	Ċ		0	Ć	7 +
	Weighted sum choice model	The model allows one to determine the ranks of alternatives.			Q			
	The model of choice based on the HPF	The model of choice based on the hybrid preference function (HPF). The model allows one to determine the ranks of alternatives based on a hybrid preference function. The research was carried out within the framework of the federal target program "Research and development on priority areas of development of the scientific - technological complex of Russia for 2014-2020", Agreement No. 14.604.21.0052 dated June 30, 2014 with the Ministry of Education and Science. The unique identifier of the project is RFMEFI60414X0052.			Q			
	The Model of Pareto-Optimal Solutions	Assigns rank 1 to pareto-optimal solutions and rank 0 to dominant ones			Q	"		
	BPR-model of transport network	The model describes the transport network. The cost function for traveling along an arc is determined by the classical BPR function: travel_time (flow) = free_flow_time * (1 + B * (flow / capacity) ^ P). The input of the model serves a network graph and a set of correspondences. The output returns the distribution of the flows along the arcs (the equilibrium state). Software implementation of the model: Anikin AS The research was carried out within the framework of the federal target program *Research and development in priority areas of development of the scientific and technological complex of Russia for 2014-2020*, Agreement No. 14.604.21.0052 dated June 30, 2014 with the Ministry of Education and Science. The unique identifier of the project is RFMEFI60414X0052.	/opt/kiam/flows_optimize/run.	sh	Q			

Parameters

Name: The model of choice based on the HPF

Description: The model of choice based on the hybrid preference function (HPF). The model allows one to determine the ranks of alternatives based on a hybrid preference function. The research was carried out within the framework of the federal target program "Research and development on priority areas of development of the scientific - technological complex of Russia for 2014-2020", Agreement No. 14.604.21.0052 dated June 30, 2014 with the Ministry of Education and Science. The unique identifier of the project is RFMEFI60414X0052.

Url:

Internal method: GFP

Accessibility: public

Model parameters

Name	Description	integer.	Number of meas.	Min value	Max value	Required	Replication
mk		i18n: Yes	3			i18n: Yes	i18n: No
p		i18n: Yes	1			i18n: Yes	i18n: No
criteria_weight		i18n: No	1	0.0		i18n: Yes	i18n: No
criteria_values		i18n: No	2			i18n: Yes	i18n: No
alternative_rank		i18n: No	1	0.0	1.0	i18n: No	i18n: No
interval		i18n: No	1			i18n: Yes	i18n: No
scale		i18n: No	2			i18n: Yes	i18n: No
full_trace		i18n: No	0			i18n: Yes	i18n: No

Edit | Back

A conceptual model of integrated computing complex

Spiral structure and model that implements the strategic planning of operations

Neural network ensemble implements the model climate spectra of sea excitement

The structure of neural network ensemble implementing the transformation operator of complex signals when controlling complicated situations

Radial basis function network – Perceptron – Kohonen's network

Control of the object dynamics in the process of system evolution

- controls the equilibrium parameters of the sea dynamic object:
 - careen,
 - trim,
 - draft by the nose and stern,
- forecast of
 - the safe speed,
 - the course angle of the wave

depending on the intensity of external disturbances

NEURO-FUZZY model

Instead of setting preference areas for decision makers, a neural network with fuzzy rules is trained:

Model of a logical conclusion according to a precedent

Scheme of modeling evolutionary dynamics of complex systems

Results of the NEURO-FUZZY model

	=	🗎 ws-dss.com	Ċ	● ① □
<pre>nrt <rinruby\$get_value()< pre=""></rinruby\$get_value()<></pre>				
RinRuby\$parse.string <rin< td=""><th>Ruby\$get_value()</th><td></td><td></td><td></td></rin<>	Ruby\$get_value()			
.RinRuby\$parseable(.RinRuby\$pa	arse.string)			
require("parallel")				
require("anfis")				
X <- matrix(x,ncol=nc,nrow=r	nr)			
Y <- matrix(y,ncol=1,nrow=4))			
membershipFunction<-list(
x=c(new(Class="NormalizedGa	ussianMF",parameters=c(mu=	=0.25,sigma=0.3)),		
new(Class="NormalizedGauss:	ianMF",parameters=c(mu=0.5	5,sigma=0.3)),		
new(Class="NormalizedGauss:	ianMF",parameters=c(mu=0.7	75,sigma=0.3))),		
y=c(new(Class="NormalizedGa	ussianMF",parameters=c(mu=	=0.25,sigma=0.3)),		
new(Class="NormalizedGauss:	ianMF",parameters=c(mu=0.5	5,sigma=0.3)),		
new(Class="NormalizedGauss:	ianMF",parameters=c(mu=0.7	75,sigma=0.3))))		
anfis3 <- new(Class="ANFIS"	,X,Y,membershipFunction)			
trainOutput <- trainHybridJa	angOffLine(anfis3, epochs=	=10)		
[1] "epoch: 1"				
[1] "epoch: 2"				
[1] "epoch: 3"				
[1] "epoch: 4"				
[1] "epoch: 5"				
[1] "epoch: 6"				
[1] "epoch: /"				
[1] epoch: o				
[1] epoch: 9	nst)			
<pre>xtost <_ c(prodict(opfic2))</pre>	11 ()			
ytest <- c(predict(aniiss,	, ,			
print('PINDURY EVAL ELAC')				
print('RINRUBY.EVAL.FLAG')	245122726200711			

Changed at: 2019-12-04 19:43:14 +0300

Interaction scheme

Leaning: Neural network training

Is there an airplane in the picture?

		=	ws-dss.com	C	0 1 0 +
Method: airplane_c User: sudakov@ws Input data:	nn -dss.com				
{ "n_layers": "min_neurons "max_neurons "epochs": 1, "batch size"	1, ": 20, ": 100, : 200				

Output data:

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	18, 18, 20)	560
activation_1 (Activation)	(None,	18, 18, 20)	0
max_pooling2d_1 (MaxPooling2	(None,	9, 9, 20)	0
flatten_1 (Flatten)	(None,	1620)	0
dense_1 (Dense)	(None,	100)	162100
activation_2 (Activation)	(None,	100)	0
dense_2 (Dense)	(None,	1)	101
activation_3 (Activation)	(None,	1)	0
Total params: 162,761 Trainable params: 162,761 Non-trainable params: 0			
Accuracy: 0.855 Your bonus is: 54.999999999999	99964 -3	33.0 = 21.99999999999	999964

Prospects

Let's integrate your models Write me: sudakov@ws-dss.com

Thanks for attention!