Kubernetes container orchestration as a framework for flexible and effective scientific data analysis

Anton Teslyuk, Sergey Bobkov, Viacheslav Ilyin, Alexander Novikov, Alexey Poyda, Vasily Velikhov NRC Kurchatov Institute

IVANNIKOV ISP RAS OPEN CONFERENCE

5-6 December 2019

European XFEL

- X-Ray Free-Electron Laser mega science research facility
 - High brilliance (10⁹ times more than conventional X-ray source)
 - High frequency: up to 27000 flashes per second
 - Wavelength range: 0.05-4.7 nm
 - Short pulses: less than 100 fs
- Construction start Jan 2009
- First experiments Sep 2017

SPI Experiments

- The goal: Molecule structure at atomic level (1A)
- Big data:
 - 120 Tb per experiment (Dec 2017)
 - 360 Tb per experiment (May 2019)
 - expected to be increased **100x** times!
- Experiments evolve rapidly
- Data Analysis is also under intensive development:
 - Algorithms
 - Software
 - IT services

*Gaffney K. J. & Chapman H. N.// Science, 2007.

The Goal of the Project

- Software Pipeline for automated data processing
- From diffraction patterns to 3D structure in near real-time
- Core Ideas:
 - Integration of software packages for various stages of data analysis in analysis pipeline
 - Simple configuration and deployment
 - Scalability
 - Extensibility, modular architecture
 - Various workflows

XFEL data analysis scheme

A little bit more detailed

Realization Strategy

- Container technology for easy software deployment
- Microservices for individual stages of analysis
- Container orchestration for scalability and management
- Shared network filesystem for data I/O

Testbed

- Dedicated K8s cluster (version v1.15.3) with three nodes
- Dedicated CEPHfs storage
- 1Gbps interconnect
- NVIDIA M2050 GPU cards

Master Node 2x Xeon X5650 24 Gb RAM NVIDIA GF100

Data Exchange Scheme

Master Node

- Data is stored in a shared filesystem (GPFS, Lustre, CEPH) in HDF5 files
- K8s based container orchestration is used for:
 - containers deployment
 - load balancing
 - internal and external communications
 - services monitoring and management
- Native K8s support for CEPHfs volumes

Kubernetes Cluster

Technological Layers

- Software
 Platform Level
- Service/Job Level
- Container Level
- Application level

Container Level

- Information how to build and install application
- Dockerfile syntax
- Result: application is ready to be used inside the container
- Users can use it directly with Docker!

```
FROM ubuntu:18.04
WORKDIR /root
RUN apt update && apt upgrade -y
RUN apt install -y cmake libtiff5-dev libfftw3-dev gsl-bin
RUN git clone https://github.com/FXIhub/libspimage.git
RUN mkdir -p libspimage/build
WORKDIR libspimage/build
RUN cmake -DCMAKE_VERBOSE_MAKEFILE=ON -DBUILD_LIBRARY=ON -D
RUN make && make install
RUN mkdir /opt/xfel
WORKDIR /opt/xfel
COPY phase.py .
```

Kubernetes Services/Jobs Level

- Description of how to run the Application:
 - location of container images for job applications
 - location of volumes with the data
 - parallelization patterns
- YAML syntax
- Result: application is connected to data and is parallelized inside K8s cluster

```
piVersion: batch/v1
kind: Job
etadata:
 name: phaser-sample
spec:
 template:
   spec:
     containers:
     - name: phaser-sample
       image: wn75:5000/phaser
       command: ["/usr/bin/python", "./phase.py",
       volumeMounts:
          - mountPath: "/ceph"
           name: cephfs
     volumes:
     - name: cephfs
       cephfs:
          monitors:
          - ceph55.sandbox.g3.computing.kiae.ru
          user: cephfs
          secretRef:
           name: ceph-secret
          readOnly: false
      restartPolicy: Never
 backoffLimit: 4
```

Platform Level

- Data processing platform as a set of Kubernes objects:
 - Services/Jobs
 - Data Volumes (CEPHfs)
 - Configuration Parameters
 - Set of users and user roles, access patterns
- Helm Templates Syntax: charts, releases, deployments
- Available as a package from repository, can be installed in a simple manener:

\$ helm repo add stable https://bio1.grid.kiae.ru/repo/xfel \$ helm repo update \$ helm install stable/xfel_pipeline --generate-name

Use Cases: Orientations Determination

- Dragonfly
 - EMC algorithm for orientations reconstruction
 - High quality code
 - MPI
 - GUI interface
- It is the bright case where HPC application meets HTC (Cloud)!

= ?

HPC vs HTC

- Different focus, history, architecture, ecosystem
 - HPC parallel computing. Intensive communications between nodes
 - HTC data and services centric. Loosely coupled services
- Possible scenarios of combined usage
 - application code refactoring
 - run HTC workloads in HPC systems (Singularity, Shifter)
 - virtualize HPC infrastructure in HTC systems
 - maintain separate infrastructures

Dragonfly scaling benchmarks

- Kubernetes jobs vs bare metal Centos 6 installation
- Kubernetes is approx. 4% faster than bare metal!

Components: Phase retrieval

- Orientation Determination
 - Libspsim package
 - Python wrapper to parse input/ouput, compute
- At Docker level: Ubuntu 18 based image, CUDA support
- At K8s level: Works as K8s Job with CEPH filesystem volumes
- Use JSON format as Input/Output
- Use HDF5 to store output

GUI applications as a web K8s service

- autoplot.py as a HTTP service
- realtime EMC monitoring from browser

Summary

- Docker and Kubernetes is a suitable platform to build data analysis pipelines
- K8s infrastructure allows various scenarios of software usage:
 - Data parallel applications
 - MPI applications
 - SMP/Cuda applications
 - GUI applications as web services
- From XFEL data analysis testbed to wider applications

Acknowledgements

Joined Team from KI and DESY

Presented results are supported by the Helmholtz Associations Initiative and Networking Fund and the Russian Science Foundation (Project No. 18-41-06001).