
 Kubernetes container
orchestration as a framework

for flexible and effective
scientific data analysis

Anton Teslyuk, Sergey Bobkov, Viacheslav Ilyin,
Alexander Novikov, Alexey Poyda, Vasily Velikhov

NRC Kurchatov Institute

IVANNIKOV ISP RAS OPEN CONFERENCE

5-6 December 2019

European XFEL

• X-Ray Free-Electron Laser -
mega science research facility
• High brilliance (109 times more than

conventional X-ray source)

• High frequency: up to 27000 flashes
per second

• Wavelength range: 0.05-4.7 nm

• Short pulses: less than 100 fs

• Construction start – Jan 2009

• First experiments – Sep 2017

SPI Experiments

• The goal: Molecule structure at atomic
level (1A)

• Big data:
• 120 Tb per experiment (Dec 2017)
• 360 Tb per experiment (May 2019)
• expected to be increased 100x times!

• Experiments evolve rapidly
• Data Analysis is also under intensive

development:
• Algorithms
• Software
• IT services

Particle
injection

Diffraction
pattern

*Gaffney K. J. & Chapman H. N.// Science, 2007.

The Goal of the Project

• Software Pipeline for automated
data processing

• From diffraction patterns to 3D
structure in near real-time

• Core Ideas:
• Integration of software packages for

various stages of data analysis in
analysis pipeline

• Simple configuration and deployment
• Scalability
• Extensibility, modular architecture
• Various workflows

XFEL data analysis scheme

Briefly

A little bit more detailed

Realization Strategy

• Container technology for easy software

deployment

• Microservices for individual stages of

analysis

• Container orchestration for scalability and

management

• Shared network filesystem for data I/O

Testbed

• Dedicated K8s cluster (version

v1.15.3) with three nodes

• Dedicated CEPHfs storage

• 1Gbps interconnect

• NVIDIA M2050 GPU cards

Data Exchange Scheme

• Data is stored in a shared filesystem
(GPFS, Lustre, CEPH) in HDF5 files

• K8s based container orchestration is
used for:
• containers deployment
• load balancing
• internal and external

communications
• services monitoring and

management
• Native K8s support for CEPHfs volumes

Technological Layers

• Software
Platform Level

• Service/Job Level
• Container Level
• Application level

Container Level

• Information how to
build and install
application

• Dockerfile syntax

• Result: application is
ready to be used
inside the container

• Users can use it
directly with Docker!

Kubernetes Services/Jobs Level

• Description of how to run the
Application:
• location of container

images for job applications
• location of volumes with

the data
• parallelization patterns

• YAML syntax
• Result: application is

connected to data and is
parallelized inside K8s cluster

Platform Level

• Data processing platform as a set of Kubernes objects:
• Services/Jobs
• Data Volumes (CEPHfs)
• Configuration Parameters
• Set of users and user roles, access patterns

• Helm Templates Syntax: charts, releases, deployments
• Available as a package from repository, can be installed in a simple manener:

Use Cases: Orientations Determination

• Dragonfly
• EMC algorithm for orientations reconstruction

• High quality code

• MPI

• GUI interface

• It is the bright case where HPC application meets HTC (Cloud)!

+ = ?

HPC vs HTC

• Different focus, history, architecture, ecosystem
• HPC – parallel computing. Intensive communications between nodes

• HTC – data and services centric. Loosely coupled services

• Possible scenarios of combined usage
• application code refactoring

• run HTC workloads in HPC systems (Singularity, Shifter)

• virtualize HPC infrastructure in HTC systems

• maintain separate infrastructures

Dragonfly scaling benchmarks

• Kubernetes jobs vs bare
metal Centos 6
installation

• Kubernetes is approx. 4%
faster than bare metal!

Node 1

Node 2

Components: Phase retrieval

• Orientation Determination
• Libspsim package

• Python wrapper to parse input/ouput, compute

• At Docker level: Ubuntu 18 based image, CUDA support

• At K8s level: Works as K8s Job with CEPH filesystem volumes

• Use JSON format

 as Input/Output

• Use HDF5 to store

 output

GUI applications as a web K8s service

• autoplot.py as a HTTP
service

• realtime EMC monitoring
from browser

Autoplot.py
Xpra X11

remote Server

HTML5
Renderer

Docker Container (HTTP Service)

Summary

• Docker and Kubernetes is a suitable platform to build data analysis
pipelines

• K8s infrastructure allows various scenarios of software usage:
• Data parallel applications

• MPI applications

• SMP/Cuda applications

• GUI applications as web services

• From XFEL data analysis testbed to wider applications

Acknowledgements

Presented results are supported by the Helmholtz Associations Initiative and Networking Fund and the Russian Science
Foundation (Project No. 18-41-06001).

Joined Team from
KI and DESY

